The kidneys are organs that have numerous biological roles. Their primary role is to maintain the homeostatic balance of bodily fluids by filtering and secreting metabolites (such as urea) and minerals from the blood and excreting them, along with water, as urine. Because the kidneys are poised to sense plasma concentrations of ions such as sodium, potassium, hydrogen, oxygen, and compounds such as amino acids, creatinine, bicarbonate, and glucose, they are important regulators of blood pressure, glucose metabolism, and erythropoiesis (the process by which red blood cells (erythrocytes) are produced). The medical field that studies the kidneys and diseases of the kidney is called nephrology.The prefix nephro- meaning kidney is from the Ancient Greek word nephros (νεφρός); the adjective renal meaning related to the kidney is from Latin rēnēs, meaning kidneys.
Contents.
1 Anatomy
2 Functions
2.1 Blood Filtering
2.2 Excretion of waste products
2.3 Homeostasis
2.3.1 Acid-base balance
2.3.2 Blood pressure
2.3.3 Plasma volume
2.4 Hormone secretion
3 Embryology
3.1 Pronephros
3.2 Mesonephros
3.3 Metanephros
4 Terms
4.1 Medical terminology
5 Diseases and disorders
5.1 Congenital
5.2 Acquired
6 The failing kidney
7 Histology
8 History of human thought about kidneys
9 Animal kidneys as food
10 See also
11 References
12 External links
Anatomy
In humans, the kidneys are located in the posterior part of the abdominal cavity. There are two, one on each side of the spine; the right kidney sits just below the diaphragm and posterior to the liver, the left below the diaphragm and posterior to the spleen. Above each kidney is an adrenal gland (also called the suprarenal gland). The asymmetry within the abdominal cavity caused by the liver results in the right kidney being slightly lower than the left one while the left kidney is located slightly more medial. The bulk of water re-absorption in the vertebrate kidney takes place in the loop of Henle.
The kidneys are retroperitoneal and range from 9 to 13 cm in diameter; the left slightly larger than the right. They are approximately at the vertebral level T12 to L3. The upper parts of the kidneys are partially protected by the eleventh and twelfth ribs, and each whole kidney and adrenal gland are surrounded by two layers of fat (the perirenal and pararenal fat) and the renal fascia which help to cushion it. Congenital absence of one or both kidneys, known as unilateral (on one side) or bilateral (on both the sides) renal agenesis, can occur. Renal agenesis is also the base for the renal anal gland which helps the large intestine absorb water.
The kidneys receive unfiltered blood directly from the heart through the abdominal aorta which then branches to the left and right renal arteries. Filtered blood then returns by the left and right renal veins to the inferior vena cava and then the heart. Renal blood flow accounts for 20-25% of the cardiac output.
Functions
Main article: Renal physiology
Blood Filtering
The renal corpuscle is the site of the nephron, where blood is "filtered".
The blood enters the kidney through the renal artery in the renal sinus. It branches into segmental arteries, which further divide into interlobar arteries penetrating the renal capsule and extending through the renal columns between the renal pyramids. The interlobar arteries then supply blood to the arcuate arteries that run through the boundary of the cortex and the medulla. Each arcuate artery supply a variety of additional interlobar arteries that feed into the afferent arterioles to be filtered through the nephrons. After filtration occurs the blood moves through a small network of venules that converge into interlobar veins. As with the arteriole distribution the veins follow the same pattern, the interlobar provide blood to the arcuate veins then back to the interlobar veins which come to form the renal vein exiting the kidney for transfusion for blood.
Blood filtering takes place in the (nephron), which is found in the kidney.
Excretion of waste products
The kidneys excrete a variety of waste products produced by metabolism, including the nitrogenous wastes: urea (from protein catabolism) and uric acid (from nucleic acid metabolism) and water.
Homeostasis
The kidney is one of the major organs involved in whole-body homeostasis. Among its homeostatic functions are acid-base balance, regulation of electrolyte concentrations, control of blood volume, and regulation of blood pressure. The kidneys accomplish these homeostatic functions independently and through coordination with other organs, particularly those of the endocrine system. The kidney communicates with these organs through hormones secreted into the bloodstream. .
Acid-base balance
The kidneys regulate the pH of blood by adjusting H+ ion levels, referred as augmentation of mineral ion concentration, as well as water composition of the blood.
Blood pressure
Main article: Renin-angiotensin system
Sodium ions are controlled in a homeostatic process involving aldosterone which increases sodium ion reabsorption in the distal convoluted tubules.
Plasma volume
Any significant rise or drop in plasma osmolality is detected by the hypothalamus, which communicates directly with the posterior pituitary gland. A rise in osmolality causes the gland to secrete antidiuretic hormone, resulting in water reabsorption by the kidney and an increase in urine concentration. The two factors work together to return the plasma osmolality to its normal levels.
Contents.
1 Anatomy
2 Functions
2.1 Blood Filtering
2.2 Excretion of waste products
2.3 Homeostasis
2.3.1 Acid-base balance
2.3.2 Blood pressure
2.3.3 Plasma volume
2.4 Hormone secretion
3 Embryology
3.1 Pronephros
3.2 Mesonephros
3.3 Metanephros
4 Terms
4.1 Medical terminology
5 Diseases and disorders
5.1 Congenital
5.2 Acquired
6 The failing kidney
7 Histology
8 History of human thought about kidneys
9 Animal kidneys as food
10 See also
11 References
12 External links
Anatomy
In humans, the kidneys are located in the posterior part of the abdominal cavity. There are two, one on each side of the spine; the right kidney sits just below the diaphragm and posterior to the liver, the left below the diaphragm and posterior to the spleen. Above each kidney is an adrenal gland (also called the suprarenal gland). The asymmetry within the abdominal cavity caused by the liver results in the right kidney being slightly lower than the left one while the left kidney is located slightly more medial. The bulk of water re-absorption in the vertebrate kidney takes place in the loop of Henle.
The kidneys are retroperitoneal and range from 9 to 13 cm in diameter; the left slightly larger than the right. They are approximately at the vertebral level T12 to L3. The upper parts of the kidneys are partially protected by the eleventh and twelfth ribs, and each whole kidney and adrenal gland are surrounded by two layers of fat (the perirenal and pararenal fat) and the renal fascia which help to cushion it. Congenital absence of one or both kidneys, known as unilateral (on one side) or bilateral (on both the sides) renal agenesis, can occur. Renal agenesis is also the base for the renal anal gland which helps the large intestine absorb water.
The kidneys receive unfiltered blood directly from the heart through the abdominal aorta which then branches to the left and right renal arteries. Filtered blood then returns by the left and right renal veins to the inferior vena cava and then the heart. Renal blood flow accounts for 20-25% of the cardiac output.
Functions
Main article: Renal physiology
Blood Filtering
The renal corpuscle is the site of the nephron, where blood is "filtered".
The blood enters the kidney through the renal artery in the renal sinus. It branches into segmental arteries, which further divide into interlobar arteries penetrating the renal capsule and extending through the renal columns between the renal pyramids. The interlobar arteries then supply blood to the arcuate arteries that run through the boundary of the cortex and the medulla. Each arcuate artery supply a variety of additional interlobar arteries that feed into the afferent arterioles to be filtered through the nephrons. After filtration occurs the blood moves through a small network of venules that converge into interlobar veins. As with the arteriole distribution the veins follow the same pattern, the interlobar provide blood to the arcuate veins then back to the interlobar veins which come to form the renal vein exiting the kidney for transfusion for blood.
Blood filtering takes place in the (nephron), which is found in the kidney.
Excretion of waste products
The kidneys excrete a variety of waste products produced by metabolism, including the nitrogenous wastes: urea (from protein catabolism) and uric acid (from nucleic acid metabolism) and water.
Homeostasis
The kidney is one of the major organs involved in whole-body homeostasis. Among its homeostatic functions are acid-base balance, regulation of electrolyte concentrations, control of blood volume, and regulation of blood pressure. The kidneys accomplish these homeostatic functions independently and through coordination with other organs, particularly those of the endocrine system. The kidney communicates with these organs through hormones secreted into the bloodstream. .
Acid-base balance
The kidneys regulate the pH of blood by adjusting H+ ion levels, referred as augmentation of mineral ion concentration, as well as water composition of the blood.
Blood pressure
Main article: Renin-angiotensin system
Sodium ions are controlled in a homeostatic process involving aldosterone which increases sodium ion reabsorption in the distal convoluted tubules.
Plasma volume
Any significant rise or drop in plasma osmolality is detected by the hypothalamus, which communicates directly with the posterior pituitary gland. A rise in osmolality causes the gland to secrete antidiuretic hormone, resulting in water reabsorption by the kidney and an increase in urine concentration. The two factors work together to return the plasma osmolality to its normal levels.
Hormone secretion
The kidneys secrete a variety of hormones. Erythropoietin is released in response to low levels of O2 in the renal circulation. It stimulates erythrocyte production in red bone marrow. Renin is involved in the regulation of aldosterone secretion by the renin-angiotensin-aldosterone system. Calcitriol, the activated form of vitamin D, promotes the absorption of Ca2+ from the blood and the excretion of PO32-. They both help to increase Ca2+ levels[clarification needed].
Embryology
Main article: Development of the urinary and reproductive organs
The mammalian kidney develops from intermediate mesoderm. Kidney development, also called nephrogenesis, proceeds through a series of three successive phases, each marked by the development of a more advanced pair of kidneys: the pronephros, mesonephros, and metanephros. (The plural forms of these terms end in -oi.)
Pronephros
Main article: Pronephros
During approximately day 22 of human gestation, the paired pronephroi appear towards the cranial end of the intermediate mesoderm. In this region, epithelial cells arrange themselves in a series of tubules called nephrotomes and join laterally with the pronephric duct, which does not reach the outside of the embryo. Thus the pronephros is considered nonfunctional in mammals because it cannot excrete waste from the embryo.
Mesonephros
Main article: Mesonephros
Each pronephric duct grows towards the tail of the embryo, and in doing so induces intermediate mesoderm in the thoracolumbar area to become epithelial tubules called mesonephric tubules. Each mesonephric tubule receives a blood supply from a branch of the aorta, ending in a capillary tuft analogous to the glomerulus of the definitive nephron. The mesonephric tubule forms a capsule around the capillary tuft, allowing for filtration of blood. This filtrate flows through the mesonephric tubule and is drained into the continuation of the pronephric duct, now called the mesonephric duct or Wolffian duct. The nephrotomes of the pronephros degenerate while the mesonephric duct extends towards the most caudal end of the embryo, ultimately attaching to the cloaca. The mammalian mesonephros is similar to the kidneys of aquatic amphibians and fishes.
Metanephros
During the fifth week of gestation, the mesonephric duct develops an outpouching, the ureteric bud, near its attachment to the cloaca. This bud, also called the metanephrogenic diverticulum, grows posteriorly and towards the head of the embryo. The elongated stalk of the ureteric bud, the metanephric duct, later forms the ureter. As the cranial end of the bud extends into the intermediate mesoderm, it undergoes a series of branchings to form the collecting duct system of the kidney. It also forms the major and minor calyces and the renal pelvis.
The portion of undifferentiated intermediate mesoderm in contact with the tips of the branching ureteric bud is known as the metanephrogenic blastema. Signals released from the ureteric bud induce the differentiation of the metanephrogenic blastema into the renal tubules. As the renal tubules grow, they come into contact and join with connecting tubules of the collecting duct system, forming a continuous passage for flow from the renal tubule to the collecting duct. Simultaneously, precursors of vascular endothelial cells begin to take their position at the tips of the renal tubules. These cells differentiate into the cells of the definitive not for me.glomerulus.
Terms
Microscopic photograph of the renal cortex.
Microscopic photograph of the renal medulla.
renal capsule: The membranous covering of the kidney.
cortex: The outer layer over the internal medulla. It contains blood vessels, glomeruli (which are the kidneys' "filters") and urine tubes and is supported by a fibrous matrix.
hilum: The opening in the middle of the concave medial border for nerves and blood vessels to pass into the renal sinus.
renal column: The structures which support the cortex. They consist of lines of blood vessels and urinary tubes and a fibrous material.
renal sinus: The cavity which houses the renal pyramids.
calyces: The recesses in the internal medulla which hold the pyramids. They are used to subdivide the sections of the kidney. (singular - calyx)
papillae: The small conical projections along the wall of the renal sinus. They have openings through which urine passes into the calyces. (singular - papilla)
renal pyramids: The conical segments within the internal medulla. They contain the secreting apparatus and tubules and are also called malpighian pyramids.
renal artery: Two renal arteries come from the aorta, each connecting to a kidney. The artery divides into five branches, each of which leads to a ball of capillaries. The arteries supply (unfiltered) blood to the kidneys. The left kidney receives about 60% of the renal bloodflow.
renal vein: The filtered blood returns to circulation through the renal veins which join into the inferior vena cava.
renal pelvis: Basically just a funnel, the renal pelvis accepts the urine and channels it out of the hilus into the ureter.
ureter: A narrow tube 40 cm long and 4 mm in diameter. Passing from the renal pelvis out of the hilus and down to the bladder. The ureter carries urine from the kidneys to the bladder by means of peristalsis.
renal lobe: Each pyramid together with the associated overlying cortex forms a renal lobe
Medical terminology
Medical terms related to the kidneys involve the prefixes renal- and nephro-.
Surgical removal of the kidney is a nephrectomy, while a radical nephrectomy is removal of the kidney, its surrounding tissue, lymph nodes, and potentially the adrenal gland. A radical nephrectomy is performed for the removal of the cancers.
Diseases and disorders
Main article: Nephropathy
Congenital
Congenital hydronephrosis
Congenital obstruction of urinary tract
Duplicated ureter
Horseshoe kidney
Polycystic kidney disease
Renal dysplasia
Unilateral small kidney
Multicystic dysplastic kidney
Parenchyma
Acquired
drawing of an enlarged kidney by John Hunter
Diabetic nephropathy
Glomerulonephritis
Hydronephrosis is the enlargement of one or both of the kidneys caused by obstruction of the flow of urine.
Interstitial nephritis
Kidney stones are a relatively common and particularly painful disorder.
Kidney tumors
Wilms tumor
Renal cell carcinoma
Lupus nephritis
Minimal change disease
In nephrotic syndrome, the glomerulus has been damaged so that a large amount of protein in the blood enters the urine. Other frequent features of the nephrotic syndrome include swelling, low serum albumin, and high cholesterol.
Pyelonephritis is infection of the kidneys and is frequently caused by complication of a urinary tract infection.
Renal failure
Acute renal failure
Stage 5 Chronic Kidney Disease
The failing kidney
Generally, humans can live normally with just one kidney, as one has more functioning renal tissue than is needed to survive. Only when the amount of functioning kidney tissue is greatly diminished Stage 5 Chronic Kidney Disease will develop. If the glomerular filtration rate (a measure of renal function) has fallen very low ( Stage 5 Chronic Kidney Disease), or if the renal dysfunction leads to severe symptoms, then renal replacement therapy is indicated, either dialysis or kidney transplantation.
Histology
Human cell types found in the kidney include:
Kidney glomerulus parietal cell
Kidney glomerulus podocyte
Kidney proximal tubule brush border cell
Loop of Henle thin segment cell
Thick ascending limb cell
Kidney distal tubule cell
Kidney collecting duct cell
Cortical collecting duct cell
Medullary collecting duct cell
Interstitial kidney cell, which do not participate in the filtration process.
History of human thought about kidneys
The Latin term renes is related to the English word "reins", a synonym for the kidneys in Shakespearean English (eg. Merry Wives of Windsor 3.5), which was also the time the King James Version was translated. Kidneys were once popularly regarded as the seat of the conscience and reflection, and a number of verses in the Bible (eg. Ps. 7:9, Rev. 2:23) state that God searches out and inspects the kidneys, or "reins", of humans. Similarly, the Talmud (Berakhoth 61.a) states that one of the two kidneys counsels what is good, and the other evil.
Animal kidneys as food
The kidneys of animals can be cooked and eaten by humans (along with other offal). If prepared properly, they can be nutritious and pleasant tasting. Veal kidneys and lamb kidneys are particularly prized for their tenderness and flavour. Kidneys can be grilled or sautéed, though they become tough and unpleasant if overcooked.
See also
Artificial kidney
Kidney stone
Kidney transplantation
Renal physiology
Urinary system
References
Wikimedia Commons has media related to: Kidney
^ "Nephrology". Dictionary.com. http://dictionary.reference.com/browse/Nephrology. Retrieved on 2007-08-04.
^ Maton, Anthea; Jean Hopkins, Charles William McLaughlin, Susan Johnson, Maryanna Quon Warner, David LaHart, Jill D. Wright (1993). Human Biology and Health. Englewood Cliffs, New Jersey, USA: Prentice Hall. ISBN 0-13-981176-1.
^ "the symptoms of kidney stones and kidney stone treatment" (html). http://www.symptoms-kidney-stones-treatments.com/kidney-functions.html.
^ "The Excretory System" (html). http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookEXCRET.html#Kidney%20Function.
^ Bruce M. Carlson (2004). Human Embryology and Developmental Biology (3rd edition ed.). Saint Louis: Mosby. ISBN 0-323-03649-X.
^ mednote.co
^ The Patient as Person: Explorations in Medical Ethics p. 60 by Paul Ramsey, Margaret Farley, Albert Jonsen, William F. May (2002)
^ History of Nephrology 2 p. 235 by International Association for the History of Nephrology Congress, Garabed Eknoyan, Spyros G. Marketos, Natale G. De Santo - 1997; Reprint of American Journal of Nephrology; v. 14, no. 4-6, 1994.
External links
electron microscopic images of the kidney (Dr. Jastrow's EM-Atlas)
European Renal Genome project kidney function tutorial
Kidney Foundation of Canada kidney disease information
National Kidney Foundation
Kidney Foundation (Canada)
BC Renal Agency - Official site for the province-wide network of renal care providers in British Columbia, Canada
World Kidney Day website
UNC Nephropathology
Information on kidneys
The kidneys secrete a variety of hormones. Erythropoietin is released in response to low levels of O2 in the renal circulation. It stimulates erythrocyte production in red bone marrow. Renin is involved in the regulation of aldosterone secretion by the renin-angiotensin-aldosterone system. Calcitriol, the activated form of vitamin D, promotes the absorption of Ca2+ from the blood and the excretion of PO32-. They both help to increase Ca2+ levels[clarification needed].
Embryology
Main article: Development of the urinary and reproductive organs
The mammalian kidney develops from intermediate mesoderm. Kidney development, also called nephrogenesis, proceeds through a series of three successive phases, each marked by the development of a more advanced pair of kidneys: the pronephros, mesonephros, and metanephros. (The plural forms of these terms end in -oi.)
Pronephros
Main article: Pronephros
During approximately day 22 of human gestation, the paired pronephroi appear towards the cranial end of the intermediate mesoderm. In this region, epithelial cells arrange themselves in a series of tubules called nephrotomes and join laterally with the pronephric duct, which does not reach the outside of the embryo. Thus the pronephros is considered nonfunctional in mammals because it cannot excrete waste from the embryo.
Mesonephros
Main article: Mesonephros
Each pronephric duct grows towards the tail of the embryo, and in doing so induces intermediate mesoderm in the thoracolumbar area to become epithelial tubules called mesonephric tubules. Each mesonephric tubule receives a blood supply from a branch of the aorta, ending in a capillary tuft analogous to the glomerulus of the definitive nephron. The mesonephric tubule forms a capsule around the capillary tuft, allowing for filtration of blood. This filtrate flows through the mesonephric tubule and is drained into the continuation of the pronephric duct, now called the mesonephric duct or Wolffian duct. The nephrotomes of the pronephros degenerate while the mesonephric duct extends towards the most caudal end of the embryo, ultimately attaching to the cloaca. The mammalian mesonephros is similar to the kidneys of aquatic amphibians and fishes.
Metanephros
During the fifth week of gestation, the mesonephric duct develops an outpouching, the ureteric bud, near its attachment to the cloaca. This bud, also called the metanephrogenic diverticulum, grows posteriorly and towards the head of the embryo. The elongated stalk of the ureteric bud, the metanephric duct, later forms the ureter. As the cranial end of the bud extends into the intermediate mesoderm, it undergoes a series of branchings to form the collecting duct system of the kidney. It also forms the major and minor calyces and the renal pelvis.
The portion of undifferentiated intermediate mesoderm in contact with the tips of the branching ureteric bud is known as the metanephrogenic blastema. Signals released from the ureteric bud induce the differentiation of the metanephrogenic blastema into the renal tubules. As the renal tubules grow, they come into contact and join with connecting tubules of the collecting duct system, forming a continuous passage for flow from the renal tubule to the collecting duct. Simultaneously, precursors of vascular endothelial cells begin to take their position at the tips of the renal tubules. These cells differentiate into the cells of the definitive not for me.glomerulus.
Terms
Microscopic photograph of the renal cortex.
Microscopic photograph of the renal medulla.
renal capsule: The membranous covering of the kidney.
cortex: The outer layer over the internal medulla. It contains blood vessels, glomeruli (which are the kidneys' "filters") and urine tubes and is supported by a fibrous matrix.
hilum: The opening in the middle of the concave medial border for nerves and blood vessels to pass into the renal sinus.
renal column: The structures which support the cortex. They consist of lines of blood vessels and urinary tubes and a fibrous material.
renal sinus: The cavity which houses the renal pyramids.
calyces: The recesses in the internal medulla which hold the pyramids. They are used to subdivide the sections of the kidney. (singular - calyx)
papillae: The small conical projections along the wall of the renal sinus. They have openings through which urine passes into the calyces. (singular - papilla)
renal pyramids: The conical segments within the internal medulla. They contain the secreting apparatus and tubules and are also called malpighian pyramids.
renal artery: Two renal arteries come from the aorta, each connecting to a kidney. The artery divides into five branches, each of which leads to a ball of capillaries. The arteries supply (unfiltered) blood to the kidneys. The left kidney receives about 60% of the renal bloodflow.
renal vein: The filtered blood returns to circulation through the renal veins which join into the inferior vena cava.
renal pelvis: Basically just a funnel, the renal pelvis accepts the urine and channels it out of the hilus into the ureter.
ureter: A narrow tube 40 cm long and 4 mm in diameter. Passing from the renal pelvis out of the hilus and down to the bladder. The ureter carries urine from the kidneys to the bladder by means of peristalsis.
renal lobe: Each pyramid together with the associated overlying cortex forms a renal lobe
Medical terminology
Medical terms related to the kidneys involve the prefixes renal- and nephro-.
Surgical removal of the kidney is a nephrectomy, while a radical nephrectomy is removal of the kidney, its surrounding tissue, lymph nodes, and potentially the adrenal gland. A radical nephrectomy is performed for the removal of the cancers.
Diseases and disorders
Main article: Nephropathy
Congenital
Congenital hydronephrosis
Congenital obstruction of urinary tract
Duplicated ureter
Horseshoe kidney
Polycystic kidney disease
Renal dysplasia
Unilateral small kidney
Multicystic dysplastic kidney
Parenchyma
Acquired
drawing of an enlarged kidney by John Hunter
Diabetic nephropathy
Glomerulonephritis
Hydronephrosis is the enlargement of one or both of the kidneys caused by obstruction of the flow of urine.
Interstitial nephritis
Kidney stones are a relatively common and particularly painful disorder.
Kidney tumors
Wilms tumor
Renal cell carcinoma
Lupus nephritis
Minimal change disease
In nephrotic syndrome, the glomerulus has been damaged so that a large amount of protein in the blood enters the urine. Other frequent features of the nephrotic syndrome include swelling, low serum albumin, and high cholesterol.
Pyelonephritis is infection of the kidneys and is frequently caused by complication of a urinary tract infection.
Renal failure
Acute renal failure
Stage 5 Chronic Kidney Disease
The failing kidney
Generally, humans can live normally with just one kidney, as one has more functioning renal tissue than is needed to survive. Only when the amount of functioning kidney tissue is greatly diminished Stage 5 Chronic Kidney Disease will develop. If the glomerular filtration rate (a measure of renal function) has fallen very low ( Stage 5 Chronic Kidney Disease), or if the renal dysfunction leads to severe symptoms, then renal replacement therapy is indicated, either dialysis or kidney transplantation.
Histology
Human cell types found in the kidney include:
Kidney glomerulus parietal cell
Kidney glomerulus podocyte
Kidney proximal tubule brush border cell
Loop of Henle thin segment cell
Thick ascending limb cell
Kidney distal tubule cell
Kidney collecting duct cell
Cortical collecting duct cell
Medullary collecting duct cell
Interstitial kidney cell, which do not participate in the filtration process.
History of human thought about kidneys
The Latin term renes is related to the English word "reins", a synonym for the kidneys in Shakespearean English (eg. Merry Wives of Windsor 3.5), which was also the time the King James Version was translated. Kidneys were once popularly regarded as the seat of the conscience and reflection, and a number of verses in the Bible (eg. Ps. 7:9, Rev. 2:23) state that God searches out and inspects the kidneys, or "reins", of humans. Similarly, the Talmud (Berakhoth 61.a) states that one of the two kidneys counsels what is good, and the other evil.
Animal kidneys as food
The kidneys of animals can be cooked and eaten by humans (along with other offal). If prepared properly, they can be nutritious and pleasant tasting. Veal kidneys and lamb kidneys are particularly prized for their tenderness and flavour. Kidneys can be grilled or sautéed, though they become tough and unpleasant if overcooked.
See also
Artificial kidney
Kidney stone
Kidney transplantation
Renal physiology
Urinary system
References
Wikimedia Commons has media related to: Kidney
^ "Nephrology". Dictionary.com. http://dictionary.reference.com/browse/Nephrology. Retrieved on 2007-08-04.
^ Maton, Anthea; Jean Hopkins, Charles William McLaughlin, Susan Johnson, Maryanna Quon Warner, David LaHart, Jill D. Wright (1993). Human Biology and Health. Englewood Cliffs, New Jersey, USA: Prentice Hall. ISBN 0-13-981176-1.
^ "the symptoms of kidney stones and kidney stone treatment" (html). http://www.symptoms-kidney-stones-treatments.com/kidney-functions.html.
^ "The Excretory System" (html). http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookEXCRET.html#Kidney%20Function.
^ Bruce M. Carlson (2004). Human Embryology and Developmental Biology (3rd edition ed.). Saint Louis: Mosby. ISBN 0-323-03649-X.
^ mednote.co
^ The Patient as Person: Explorations in Medical Ethics p. 60 by Paul Ramsey, Margaret Farley, Albert Jonsen, William F. May (2002)
^ History of Nephrology 2 p. 235 by International Association for the History of Nephrology Congress, Garabed Eknoyan, Spyros G. Marketos, Natale G. De Santo - 1997; Reprint of American Journal of Nephrology; v. 14, no. 4-6, 1994.
External links
electron microscopic images of the kidney (Dr. Jastrow's EM-Atlas)
European Renal Genome project kidney function tutorial
Kidney Foundation of Canada kidney disease information
National Kidney Foundation
Kidney Foundation (Canada)
BC Renal Agency - Official site for the province-wide network of renal care providers in British Columbia, Canada
World Kidney Day website
UNC Nephropathology
Information on kidneys
No comments:
Post a Comment